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In view of the complete analogy of representations (3.5), (3.6) for the mean velocity 
and the moments <u">, similar expansions can be written for the latter. Assuming that the 
Fourier images V"(q) behave 
to the principal terms of the 

analytically with small wave numbers, and confining ourselves 
asymptotic form, we have at long times 

<u> = c,g (rl, Z)? <v2> = c,g (% T), . . ’ 
C, = j drlV Cd, C, = s dqV2 (rl), . . . 

For the soliton of internal waves (l.ll), 

c, = 4xh (1 + l/h), c, = 8x (1 +.l/h)yl - xh ctg xh) 

Using the relations along with (3.10), we can assert that, to a first approximation, we 
have the estimate for the velocity variance (which also remains valid for the soliton of the 
Benjamin-On0 equation) 

<U'")Z (uo2> + <v2>, t-t 00 

which shows that, at long times, the velocity pulsations are somewhat greater in the domain 
occupied by the soliton. 

Thus, in the case of Brownian motion of the soliton, it undergoes diffusion smearing and 
canincreasethe pulsation motions of the surrounding fluid. At earlier stages, however, the 
effect of the presence of the soliton on the random disturbances is more considerable and 
more complex. For instance, immediately after switching on the random force, the disturbances 
increase more rapidly in front of the travelling soliton and more slowly behind it. 
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THE PHENOMENA OF TURBULENT TRANSPORT AND THE RENORMALIZATION-GROUP METHOD* 

E.V. TEODOROVICH 

The renormalization-group (RG) method is used to study the transportof ascalarpassive 
impurity by turbulent velocity pulses. A solution is obtained for the turbulent Prandtl 
numbers, which, in the case of large-scale long-term,processes (the infrared limit) tends 
to a universal constant, which depends only on the dimensionality of the space. The version 
of the RG method employed enables the behaviour. of the diffusion coefficient and of the 
Prandtl number to be found on approaching the asymptotic mode, and for it to be shown that 
asymptotic RG methods can be used to describe the development of turbulence in the inertial 
interval of the spectrum (IIS) of wave numbers. 

The ideas of the RG method made their first appearance in quantum field theory /l, 2/, 
and have been widely used in other fields of physics. The achievements of the method are 
specially clear in the theory of critical effects, the laws of which are determined by the 
large-scale and long-term fluctuations of the order parameter. In accordance with this, the 
RG technique has been developed as an asymptotic approach in which the ideas about the fixed 
points of the RG transformation are used and the scale similitude exponents (critical indices) 
are found by studying the RG transformation operator, linearized near to the fixed points /3, 
4/. A similar procedure has been stated, both in the context of Wilson's approach with 

*Prikl.Matem.Mekhan.,52,2,218-224,1988 
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successive exclusion of small-scale modes /4/, and in the context of the field-theory approach 

/5, c/. 
The large-scale and long-term properties of a turbulent fluid have been studied with the 

aid of Wilson's RG procedure /7/ or on the basis of the methods of field theory IS, 91. Later, 
the results obtained by asymptotic RG methods in the infrared limit, came to be used to 
explain the properties of turbulence developed in the IIS, though it remained uncertain 
exactly how these two cases are related to each other. In particular, it has been claimed 
/lo, ll/ that the results obtained by the RG method cannot be applied to the IIS, since this 
method typically makes provision for a cascade mechanism of energy transport by strong 
interaction between modes, whereas the use of perturbation theory to findtheRGtransformation 
operator presupposesaweak connection between the modes and does not describe a cascade 
process with intermode interactions, local in k-space. 

On the other hand, according to Wilson /12/, the RG method is precisely a means of 
describing local intermodal connections in the space of wave numbers andthecascademechanism 
of interaction of modes with essentially different scales. Perturbation theory is here used 
only to describe a single set of mode interaction, while the cascade process is taken into 
account by the RG method which performs summation of a subsequence of single acts of inter- 
action of modes of adjacent scales. The success in using the RG method to describe critical 
effects can be regarded as a confirmation of this point of view, though, in the case of 
turbulence, the question remains open as to whether the IIS belongs to the field where 
asymptotic methods are applicable. 

In thisconnection, it is interesting to calculate the physical characteristics of 
turbulence by the RG method without using the asymptotic approach. This idea was proposed 
by Bogolyubov and Shirkov in quantum field theory /2/. The property of RG invariance is 
connected with an arbitrariness in the choice of the normalization point, while the RG method 
is a means of rearranging the series of formal perturbation theory and of summing an infinite 
subsequence of this series. With this procedure, the possibility arises in principle of 
finding not only the exponents of scaling similarity but also the numerical amplitude factors 
and obtaining the non-power dependences in the domain of incomplete similarity. 

In turbulence theory also, attempts have been made to calculate the numerical amplitude 
factors in the context of Wilson's RG approach, based on iterative partial averaging over the 
sma$l-scale modes. The method has been used to calculate the effective viscosity, which 
describes the average response of the velocity field to external disturbances /13/. A cut- 
off was then introduced into the space of wave numbers k<A, and the dependence of the 
effective viscosity on the cut-off parameter .A was found, i.e., it was assumed that the small- 
scale modes with k>h act on the large-scale (Jr.&A) like an effective viscosity Y* (k,~). 

The dependence of the effective viscosity on the parameter A was found by solving the 
RG differential equation 

&v* (k.A(r))= R (k,?)v*fk,A (r)), A(r)=Ac-1 

The evolution operator R(k,r) was calculated in the lowest approximation of renormal- 
ization perturbation theory in the infrared limit k-0. The result v*(O,A(r)) obtained by 
solving this equation was identified with the effective (renormalized) viscosity at the wave 
number A (% which is inconsistent. 

We proposed in /14/ a procedure for calculating the effective viscosity which makes no 
use of asymptotic methods. The effective viscosity vif* (k, 0) was defined in terms of the 
complete Green's function G by the relation 

Gt,-’ (k, o) = ---in&, + vi,* (k, o)k* (1) 

and the static limit vi,* (k) = vlj* (k, O)~O=O was considered. Definition (1) is not identical 
with the commonly used definition as a means of parametrizing the influence on modes with 
wave number k from smaller scale modes with k’> k (Heisenberg's theory /15/) or as a means 
of taking account in Wilson's method /4/ of modes with k’>k, which are excluded during the 
partial averaging over the small scales. 

Calculation of the RG function in the lowest approximation of perturbation theory and 
subsequent solution of the RG compensation equation /2/ for the effective viscosity lead to 
the expression /14/ 

I*= 6,,[v,* + ~~~&DJc-~]'J* 

d-i ‘d 

Ad=8fd+ 
2ndR 

'd=m 

(2) 

(& is the surface area of the d-dimensional unit sphere). The correlation function of the 
effective random forces, used to obtain the result (2), has the form (IL is the "normalization 
momentum") 
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B* (k) = D,k-d (k2/p2)“+e (3) 

Putting n = 2, we obtain as E-+-O the theory with logarithmic divergences, which are 
eliminated by viscosity renormalization (in accordance with /9/, no other renormalizations 
are required to eliminate divergence). The theory with logarithmic divergences corresponds 
to a system having the property of scale invariance (the absence of an isolated scale), which 
is connected with the interactions in the space of wave numbers being local and with the 
cascade mechanism of energy transport over the spectrum /12/. 

A similar procedure can be used when considering the turbulent diffusion of a passive 
scalar impurity. The diffusion equation can be written as 

a,0 +$,a&l -x,4(3 = q (4) 
where 6 (r, t) is the concentration of passive impurity (or the temperature), x0 is the 
coefficient of molecular diffusion (thermal diffusivity), q is the density of the source of 
passive impurity (heat), and I#~ are the components of the turbulent fluid velocity. 

We consider Green's function Go which describes the average linear response of the field 
of passive impurity to the external source 

Ge (r2, t,; rlr tl) = 6 < 6 (rB, ta) > & (rr, tr) (5) 

The effective diffusion coefficient is defined in terms of the Fourier transform of the 
inverse Green's function 

Ge-’ (k, o) = --io + x* (k, o)k2 = --io + st,k2 - X (k, o) 03) 

where Z (k,o) is the correction to Green's function due to non-linear interactions, which 
describes the passive impurity transport by turbulent velocity pulses. Following /2/, we 
perform renormalization of the diffusion coefficient by means of the replacement x0-+x = ZX, 
in (6) and the addition to X (k,w) of the corresponding counter-term (1- Z)x,k2. The re- 
normalization constant of the diffusion coefficient 2 is found from the condition that, at 
the point of normalization k = p, o = 0, the effective diffusion coefficient must be the 
same as the renormalized coefficient: 

x* (k, o) It=,,. ,,,=o = x (7) 

i.e., the correction to the renormalized diffusion coefficient at the point of normalization 
must be zero. 

In the lowest approximation of renormalized perturbation theory we have 

GP (k, 0) = [-ia + %k2]-‘, V, = ikj. 

cc” (k, 0) = P,, (k)B* (k)[d + +k4]-’ II 

Pif (k) = 6i, - k,k,/k2 

(8) 

19) 

After substituting (9) into (8) and integrating with respect to o',weobtain, with o = 0, 

~(k, 0) _ ksp;v(k) 5 dqd %qB’ck- 9) i 
w 6 - n)’ v (k - n)’ + Xp’ 

Using the form (3) for B* and performing the integration with respect to q by the method 
of calculating the Feynman integrals /2/, we obtain 

Z(k, 0) = - 
ks (d - 1) D$ (- e) (k*)-” 

4(43#&(v +x))I'+V (n/2 - e) 
x 

I 

s [ t-Jd/8-l-a x (1 -wax + v) 
v @ + xl 1 

--c da 

0 

After passing to the limit as e-0, integrating with respect to a, andsubtracting the 
counter-term that ensures satisfaction of the normalization condition (7), we find the 
expression for the effective diffusion coefficient in the lowest approximation of renormalized 
perturbation theory 

We define the effective Prandtl number by the relation 

Pr* (k) = v* (k, 0)/x* (k, 0) 
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To calculate this number in the context of renormalization perturbation theory, using 
arguments of dimensionality and the condition for isotropy, we have 

(pr* &)I-' = F (k?+P, kde/pe, xiv), k~D~v~1~ WI 

From the normalization condition (7) we also have 

F (II YV g) = g (13) 

To find the function F(r, y,g) we use the RG method, so that, starting from the lowest 
approximation of perturbation theory for F (r, Y? g), we can refine this function by summation 
of an infinite subsequence of the series of perturbation theory. 

The condition for RG invariance, which reflects the arbitrariness in the choice of 
normalization point p, can be written as /14/ 

F (k2/~L2, k&P, xiv) = F (k2iplP, kd21p12, x,/v,) ($4) 

Putting k = ~1 in (14) and using the normalization condition (13), we find that 

x,/v, = F (~,?'p', kdzi/.P, xiv) (15) 

Substituting (15) into (14), we obtain the RG functional equation /2/ 

F (2, Y, g) = F (sit, Y/t, F ft, y, g))l (46) 
(k2/p2 = .z, kVpz = y, pIzIp = t, XIV = g) 

Differentiating (16) with respect to t and then putting t = 1, we obtain the RG dif- 
ferential equation, equivalent to (16): 

(‘2 crux + y a:+/ - fJ (y, gWg)F (x, y, g) = 0 ($7) 
B (Y, g) = aF (s, Y> &$/as i,=1 

In accordance with the RG method, we find the so-called RG function @(y,g) by starting 
from the lowest approximation of renormalization perturbation theory. Using (3), (lo), and 
definition (171, we obtain 

Knowing fl (Y, &!), the solution of Eq.(17) is found by the method of characteristics and 
is given implicitlybythe relation 

[a_ - Fl’- IO, f IT’+ 11 + 3Adyzl(2s2)l = C :(18) 

a* = % (di + bB.dAd t i), ai = ~OT/(O+ + ~-1 

If we additionally require that, in the small-scale domain (k-too) the effectiveprandtl 
number Pr* transforms into the molecular number Pr, =-v,Jxo, i.e., 

lim F (5, Y, g) = Pr,-' 
X-rDI 

then the constant C in (18) can be found from this supplementary condition, and Eq.flB) takes 
the form 

Relation (19) isthe implicitly written solution of the RG differential Eq.(17) for the 
function F@,y,g) defining the effective Prandtl number. In accordance with (31, (9) and 
ClS), this number depends on the molecular Prandtl number v&f,, the ratio ktke, and the 
dimensionality d of the space. 

It follows from our solution that, in the corresponding inertial interval klk&< 1 of 
the "large-scale" domain, the turbulent Prandtl number has the universal asymptotic form 

lim Pr* (k) = 2It/l. + 8 (d i- 2)ld - 11-I (20) 

which is independent of the molecular Prandtl number and of the nature of the transport process 
(diffusion, thermal conductivity, etc.). The asymptotic result (20) was earlier obtained in 
the context of Wilsonis approach /16/ and by means of field-theory RG /17/. The result was 

later reproduced in /XV, though an apparently unsatisfactory approach was then used, when the 
effective transport coefficients v* (k, A) and X* (k, A) were calculated with k = 0, while 



~---I 
the boundary A separating the "fast" and "slow" modes was 
then identified with the wave number k (see also /13/j. 

~ 

In Fig.1 we show a curve of the effective (turbulent) 
Prandtl number against the wave number k with d == 3 for the 
model example Pro = 7 (the molecular diffusion for water 
at 2OOC). It can be seen that there is a quite rapid tran- 
sition (within one decimal order) from one asymptotic state, 
for which kikd< 1 and the turbulent Prandtl numbex is 
independent of the molecular number (inertial interval), to 

D the other for which klkd)) 1, 
u.LJt 

where the transportisrealized 
0.1 1.11 l&d by molecular motion (dissipation interval). We can assume 

from this that the infrared RG asymptotic technique can be 

Fig.1 used to study the properties of the developed turbulence in 
the intertial interval of the spectrum, while the numerical 
amplitude factors are determined by the position ofthefixed 

points of the RG transformation, while the exponents of the power behaviour are found fromthe 
properties of the transformation, linearized close to these points. 

There have recently been discussions of the connection of the RG method with renormalized 
perturbation theory when describing turbulence, and of the role of local and non-local inter- 
mode interactions /lo, 19/. It must be said that, in these discussions, the RG method has 
been solely understood to be Wilson's approach, which consists in the successive reduction 
of the number of modes considered in the multimode system, by averaging over a narrow band 
of the spectrum, the small-scale and rapidly variables modes /12/, and using methods of 
perturbation theory to find the average influence of the excluded modes on the remainder. It 
is this statement of the RG method that we used in the theoretical analysis of turbulence*. 
(*E.V. Teodorovich, Methods of field theory in the renormalization group in statistical hydro- 
dynamics, Preprint 302, Inst. Problem Mekhaniki, Akad. Nauk SSSR, Moscow, 1987.) Asthegroup 
parameter we took the cut-off parameter in the space of wave numbers (the boundary between 
the fast and slow modes). A similar procedure can be used to find the exponents of the power 
behaviour, byusing asymptotic methods of non-linear mechanics, i.e., analysing the behaviour 
close to a fixed point of the RG transformation /3, 4/. It was correctly pointed out by 
Kraichnan /lo/' that this approach, while it enables the exponents of the power behaviour to 
be found, does not give the numerical amplitude factors. However, the power exponents can be 
found from simple physical considerations which use the concept of turbulent viscosity, and 
in this sense the use of the RG method provides nothing new. Kraichnan emphasized also that 
the lowest approximations of perturbation theory are unsuitable for describing cascade 
processes in the inertial interval, so that the RG method does not give a more rigorous basis 
for the exponents of the scaling similarity. It has also been claimed by others /ll, 18,'. 
that the RG method in which the lowest approximations of perturbation theory are used does 
not describe the energy stage. 

In the statement of the RG method used in the present paper, and proposed as long ago as 
1955 by Bogolyubov and Shirkov in quantum field theory /2/, the property of RG invariance is 
used to improve the results of perturbation theory and enables us to perform the summation of 
an infinite subsequence of the series of perturbation theory. In the field statement, the 
objects that are considered from the start are the averaged characteristics of the hydro- 
dynamic fields, such as Green's functions and the statistical moments of differential orders, 
and there is no partial averaging operation. The RG invariance is linkedwiththearbitrariness 
in the renormalization procedure when constructing the renormalized theory. This lack of 
uniqueness has an inherent physical justification and is not connected with the presence of 
divergences; it reflects thefactthat the physical results are independent of the method of 
specifying the initial and boundary conditions (functional similarity /20/J. 

The RG method is a means of considering multimode systems with strong interactionbetween 
the modes; according to the hypothesis of /21/, these interactions show themselves in a 
tendency to selfsimilarity, which is a consequence of the local nature of the interactions 
and the cascade mechanism of energy transport over the spectrum. As applied to such systems, 
the RG method in the statement of /2/ means #at an individual link of the cascade process 
is calculated acdording to perturbation theory, while the cascade chain is obtained by the 
summation of the individual links with the aid of RG. This procedure is similar to the way 
in which, in the theory of continuous Lie groups, the finite transformations are constructed 
by using the generators of infinitesimal transformations which form the Lie algebra. In 
accordance with this analogy, the role of generators is played by the RG functions B (l/Y g)- 
Though the function P(z,y,& is determined inthelowest approximation of perturbation theory 
by the interaction of the mode with wave vector p with all the remaining modes, i.e., account 
is taken of both local and non-local interactions in k-space, the derivative of this function 
at the normalization point (the RG function) is determined solely by the interaction with the 

modes of closely adjacent scales. The solution of the RG differential Eq.(17) corresponds to 
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the summation of infinitely many individual infinitesimal links of the cascade chain. 
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To above field formulation of the RG method, used by the author in the present paper and 
/14/, is a way of describing cascade processes mathematically. It enables the behaviour 
the physical quantities to be found, not only in the asymptotic domain as k - 0, but also 
the wider domain of wave-number space where the cascade process is realized. 
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